R/explor.R, R/explor_multi_CA.R, R/explor_multi_MCA.R, and 1 more
explor.RdThis function launches a shiny app in a web browser in order to do interactive visualisation and exploration of an analysis results.
explor(obj)
# S3 method for CA
explor(obj)
# S3 method for textmodel_ca
explor(obj)
# S3 method for coa
explor(obj)
# S3 method for MCA
explor(obj)
# S3 method for speMCA
explor(obj)
# S3 method for mca
explor(obj)
# S3 method for acm
explor(obj)
# S3 method for PCA
explor(obj)
# S3 method for princomp
explor(obj)
# S3 method for prcomp
explor(obj)
# S3 method for pca
explor(obj)object containing analysis results
The function launches a shiny app in the system web browser.
If you want to display supplementary individuals or variables and you're using
the dudi.coa function, you can add the coordinates of
suprow and/or supcol to as supr and/or
supr elements added to your dudi.coa result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.acm function, you can add the coordinates of
suprow and/or supcol to as supi and/or
supv elements added to your dudi.acm result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.pca function, you can add the coordinates of
suprow and/or supcol to as supi and/or
supv elements added to your dudi.pca result (See example).
if (FALSE) {
require(FactoMineR)
## FactoMineR::MCA exploration
data(hobbies)
mca <- MCA(hobbies[1:1000,c(1:8,21:23)], quali.sup = 9:10,
quanti.sup = 11, ind.sup = 1:100, graph = FALSE)
explor(mca)
## FactoMineR::PCA exploration
data(decathlon)
d <- decathlon[,1:12]
pca <- PCA(d, quanti.sup = 11:12, graph = FALSE)
explor(pca)
}
if (FALSE) {
library(ade4)
data(bordeaux)
tab <- bordeaux
row_sup <- tab[5,-4]
col_sup <- tab[-5,4]
coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE)
coa$supr <- suprow(coa, row_sup)
coa$supc <- supcol(coa, col_sup)
explor(coa)
}
if (FALSE) {
library(ade4)
data(banque)
d <- banque[-(1:100),-(19:21)]
ind_sup <- banque[1:100, -(19:21)]
var_sup <- banque[-(1:100),19:21]
acm <- dudi.acm(d, scannf = FALSE, nf = 5)
acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab)
colw <- acm$cw*ncol(d)
X <- acm.disjonctif(ind_sup)
X <- data.frame(t(t(X)/colw) - 1)
acm$supi <- suprow(acm, X)
explor(acm)
}
if (FALSE) {
library(ade4)
data(deug)
d <- deug$tab
sup_var <- d[-(1:10), 8:9]
sup_ind <- d[1:10, -(8:9)]
pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5)
supi <- suprow(pca, sup_ind)
pca$supi <- supi
supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab)
pca$supv <- supv
explor(pca)
}