R/explor.R
, R/explor_multi_CA.R
, R/explor_multi_MCA.R
, and 1 more
explor.Rd
This function launches a shiny app in a web browser in order to do interactive visualisation and exploration of an analysis results.
explor(obj)
# S3 method for CA
explor(obj)
# S3 method for textmodel_ca
explor(obj)
# S3 method for coa
explor(obj)
# S3 method for MCA
explor(obj)
# S3 method for speMCA
explor(obj)
# S3 method for mca
explor(obj)
# S3 method for acm
explor(obj)
# S3 method for PCA
explor(obj)
# S3 method for princomp
explor(obj)
# S3 method for prcomp
explor(obj)
# S3 method for pca
explor(obj)
object containing analysis results
The function launches a shiny app in the system web browser.
If you want to display supplementary individuals or variables and you're using
the dudi.coa
function, you can add the coordinates of
suprow
and/or supcol
to as supr
and/or
supr
elements added to your dudi.coa
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.acm
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.acm
result (See example).
If you want to display supplementary individuals or variables and you're using
the dudi.pca
function, you can add the coordinates of
suprow
and/or supcol
to as supi
and/or
supv
elements added to your dudi.pca
result (See example).
if (FALSE) {
require(FactoMineR)
## FactoMineR::MCA exploration
data(hobbies)
mca <- MCA(hobbies[1:1000,c(1:8,21:23)], quali.sup = 9:10,
quanti.sup = 11, ind.sup = 1:100, graph = FALSE)
explor(mca)
## FactoMineR::PCA exploration
data(decathlon)
d <- decathlon[,1:12]
pca <- PCA(d, quanti.sup = 11:12, graph = FALSE)
explor(pca)
}
if (FALSE) {
library(ade4)
data(bordeaux)
tab <- bordeaux
row_sup <- tab[5,-4]
col_sup <- tab[-5,4]
coa <- dudi.coa(tab[-5,-4], nf = 5, scannf = FALSE)
coa$supr <- suprow(coa, row_sup)
coa$supc <- supcol(coa, col_sup)
explor(coa)
}
if (FALSE) {
library(ade4)
data(banque)
d <- banque[-(1:100),-(19:21)]
ind_sup <- banque[1:100, -(19:21)]
var_sup <- banque[-(1:100),19:21]
acm <- dudi.acm(d, scannf = FALSE, nf = 5)
acm$supv <- supcol(acm, dudi.acm(var_sup, scannf = FALSE, nf = 5)$tab)
colw <- acm$cw*ncol(d)
X <- acm.disjonctif(ind_sup)
X <- data.frame(t(t(X)/colw) - 1)
acm$supi <- suprow(acm, X)
explor(acm)
}
if (FALSE) {
library(ade4)
data(deug)
d <- deug$tab
sup_var <- d[-(1:10), 8:9]
sup_ind <- d[1:10, -(8:9)]
pca <- dudi.pca(d[-(1:10), -(8:9)], scale = TRUE, scannf = FALSE, nf = 5)
supi <- suprow(pca, sup_ind)
pca$supi <- supi
supv <- supcol(pca, dudi.pca(sup_var, scale = TRUE, scannf = FALSE)$tab)
pca$supv <- supv
explor(pca)
}