vignettes/gallery.Rmd
gallery.RmdThe goal of this vignette is to show some examples of (hopefully)
useful, interesting or fun notebooks usable with
robservable.
Yes, I know, pie charts are mostly bad. But the following notebook allows the creation of interactive pie or ‘donut’ charts, with slices optionally ‘draggable’ to rearrange their order.
https://observablehq.com/@juba/draggable-pie-donut-chart
Here is a small example. To display the chart we have to
include both the chart and draw
cells, and we hide draw as it is only useful to render the
plot. We pass our data as a data frame with name and
value columns.
df <- data.frame(
name = rownames(USPersonalExpenditure),
value = USPersonalExpenditure[,"1960"]
)
robservable(
"https://observablehq.com/@juba/draggable-pie-donut-chart",
include = c("chart", "draw"),
hide = "draw",
input = list(data = df),
width = 700
)The following notebook generates animated “bar chart race” charts.
https://observablehq.com/@juba/bar-chart-race
To use it from robservable you have to place your data
in a data frame with the following columns :
id : identifier (country, city, brand…)date : observation date (can be any number or character
: year, day…)value : value for that date in this
id
Optionally, if you want the displayed date value to be different than
the one used in your dataset (for example if you iterate over monthly
data but prefer to only display the year), you can add a corresponding
date_label column.
library(readr)
library(dplyr)
library(tidyr)
## Load Covid-19 data from Johns Hopkins Github repository
d <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv")
## Reformat data
d <- d %>%
select(-`Province/State`, -Lat, -Long) %>%
rename(id = `Country/Region`) %>%
group_by(id) %>%
summarise(across(everything(), sum)) %>%
pivot_longer(-id, names_to = "date") %>%
mutate(date = as.character(lubridate::mdy(date)))
## Filter out data
d <- d %>%
group_by(date) %>%
filter(value > 0 & (n() - row_number(value)) <= 12) %>%
arrange(date)We can then generate the chart with the following
robservable call. Note that we have to include several
cells : the chart itself, the draw cell which updates it,
the date play/pause control, and the CSS
styles.
## Generate chart
robservable(
"https://observablehq.com/@juba/bar-chart-race",
include = c("viewof date", "chart", "draw", "styles"),
hide = "draw",
input = list(
data = d,
title = "COVID-19 deaths",
subtitle = "Cumulative number of COVID-19 deaths by country",
source = "Source : Johns Hopkins University"
),
width = 700,
height = 710
)The following notebook allows to create a Voronoi diagram on a map background.
https://observablehq.com/@juba/reusable-voronoi-map
Here we load data about the location of engineering schools in France in 2020 (Source : Onisep).
d <- read_csv("https://gist.githubusercontent.com/juba/ccba4dadb899588d0301968fd974a99f/raw/5dedadc47c343ad95c3759c068f1821533296087/ecoles_inge.csv")And we display it as a Voronoi diagram by calling
robservable the following way. Note that we have to include
both chart and draw cells for the map to be
rendered (but we hide draw as it doesn’t display anything
by itself).
map_url <- "https://raw.githubusercontent.com/gregoiredavid/france-geojson/master/regions-version-simplifiee.geojson"
robservable(
"@juba/reusable-voronoi-map",
include = c("chart", "draw"),
hide = "draw",
input = list(
contour = map_url,
contour_width = 1,
data = d,
longitude_var = "longitude (X)",
latitude_var = "latitude (Y)",
point_radius = 1.5,
zoom = TRUE
),
width = 600,
height = 600
)You can zoom and pan the map.
The following notebook makes bivariate choropleth maps with zoom and tooltips.
https://observablehq.com/@juba/reusable-bivariate-choropleth
We first load some data from the USA.county.data Github project, only keep California counties, and select two of the available variables.
load(url("https://raw.githubusercontent.com/Deleetdk/USA.county.data/master/data/USA_county_data.RData"))
d <- USA_county_data
d <- d[d$State == "California",]
d <- d[, c("name_16", "Graduate.Degree", "Less.Than.High.School")]
names(d) <- c("name_16", "Graduate", "<High.School")Then we can call robservable to load the notebook,
render only chart and draw (both are needed
for the map to show), hide draw and update a bunch of cells
values via the input named list. You can refer to the
notebook for an explanation of the different values.
robservable(
"@juba/reusable-bivariate-choropleth",
include = c("chart", "draw"),
hide = "draw",
input = list(
data = d,
data_id = "name_16",
data_name = "name_16",
data_var1 = "Graduate",
data_var2 = "<High.School",
map = "https://raw.githubusercontent.com/codeforamerica/click_that_hood/master/public/data/california-counties.geojson",
map_object = "geometry",
map_id_property = "name",
legend_position = "bottomleft"
),
width = 800,
height = 500
)