Skip to contents

Simple clustering

Simple clustering computation and visualisation

rainette()
Corpus clustering based on the Reinert method - Simple clustering
cutree_rainette()
Cut a rainette result tree into groups of documents
rainette_plot()
Generate a clustering description plot from a rainette result
rainette_explor()
Shiny gadget for rainette clustering exploration

Double clustering

Double clustering computation and visualisation

rainette2()
Corpus clustering based on the Reinert method - Double clustering
cutree_rainette2()
Cut a rainette2 result object into groups of documents
rainette2_complete_groups()
Complete groups membership with knn classification
rainette2_plot()
Generate a clustering description plot from a rainette2 result
rainette2_explor()
Shiny gadget for rainette2 clustering exploration

Clustering statistics

Functions used to get clustering statistics

rainette_stats()
Generate cluster keyness statistics from a rainette result

Corpus importation and segmentation

Functions to import or segment a textual corpus

import_corpus_iramuteq()
Import a corpus in Iramuteq format
split_segments()
Split a character string or corpus into segments
merge_segments()
Merges segments according to minimum segment size

Documents-clusters tables

Functions to describe relationships between documents and clusters when clustering on a segmented corpus

clusters_by_doc_table()
Returns the number of segment of each cluster for each source document
docs_by_cluster_table()
Returns, for each cluster, the number of source documents with at least n segments of this cluster

Utility functions

Functions used internally for computation

cluster_tab()
Split a dtm into two clusters with reinert algorithm
cutree()
Cut a tree into groups
order_docs()
return documents indices ordered by CA first axis coordinates
select_features()
Remove features from dtm of each group base don cc_test and tsj
switch_docs()
Switch documents between two groups to maximize chi-square value